DLS approach to continuous
Scans

Tom Cobb

Beamline Controls Core Team Lead

diamond

User Uls
Interface (SynchWeb, Acquisition Client, etc)
(B)
Subscription
Rython client
CO nte ntS R’u&%‘) User Roles
* D-llfacility upgrade
* Data writing
* PandA developments S
A

* (S agnostic Device Server
* Bluesky/Ophyd

* Specific Strategies

Fast Cache Tape Archive
(Raw Data) (ICAT)

D-11 facility upgrade

e 18-month dark period
e Starting end of 2027
* Opportunity to upgrade software architecture

* New beamlines will use new architecture from start

* Existing beamline will gradually be updated to new architecture

3 diamond

Data writing

* Tension between final format and in-flight format

* Users want data gridded 2, 3
* Live analysis wants a stack of data /dev/shn/<series>/<frane>

 HDF5 VDS is not performant for snake scan

* Instead write to "fast cache” ¥ BB
* Shared memory for local analysis
* Kafka for event-based detectors -
* Object store for multiple readers/writers)

Detector

Data

! -

oo\ [SHMPlugin g

 FromeReceiver 1/ =l| FrameProcessor

Jdev/shm/odin_bufl

(RBDMA“‘_‘le S PCIe FP&A |

j

T l HDF Writer ‘ ——= | Disk

S J h5Durite (___ J

diamond

What is PandABox?

PANDA v

PULSE3
enable
trig

SEQ1

enable

layout v SEQ1 v s

PCAP

enable

active

ontrol

AUTO LAYOUT

TTLOUTT

TTL output 1

SEQ2
enable
bita
Bitb Delay
Bite

Bitc Delay

COUNTER1
enable
trig

carry

out @

PANDA:SEQ1

PCAP.ACTIVE

ADMIN

* Position and Acquisition box

* FPGA with rewirable, configurable processing blocks like pulse
generator, position compare, position capture

* CPU with TCP server for control system integration and web
server for easy setup

* Currently collaboration between DLS, SOLEIL, MAX-IV

Power supply

Sequencer 1
130w

4x Encoder
~ In/Out daughter
modules

On board power

Slow Control
FPGA:
SPARTAN 6

Avnet PicoZed
xcZ7030 with a
Zynq SoC

LPC-FMC slot

supply regulator
for encoders, 1/0s
and picoZed

PicoZed power
sequence circuit

PandA_Front
Front panel for
TTL and LVDS
connectors

PandA Developments

 PandABrick
* PandA and PowerBrick
* |n one box
 Still 2 systems
* Prototype delivered

 PandASwitch

* PandA firmware
* Running on White Rabbit Switch V4
* Prototype in 2024 (hopefully)

* PandABox Ultra?
* Driven by SOLEIL and LEAPS

diamond

FastCs:

CS Agnostic Device

Server

from typing import Union

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root():
return {"Hello":

@app.get("/items/{item_id}")
int,
item_id,

def read_item(item_id:
return {"item_id":

EPICS
(pythonSoftIOC)

L
@

dataclass
class TempHandler:
cmd: str
async def put(self, controller, value):

(5rt\PhCRL
(Coniq‘)

"World"}

q: Union[str,

await controller.conn.send_command(
f{self.cmd}={value}\r\n")

class TempController(Controller):
start = AttrRW(Int(), handler=TempHandler("S"))
end = AttrRW(Int(), handler=TempHandler("E"))
current = AttrR(Float(prec=3), handler=TempHandler("T"))
enabled = AttrRW(Bool("Off", "On"), handler=TempHandler("N"))

None] = None):

'q": q}

Python framework for making control system devices, fast

EPICS plugin makes pythonSoftlOC + screens + ophyd interface

| — T~ — — — =

Similarin concept to FastAPI, remove boilerplate, support type hints

Plugins for EPICS, Tango and (maybe in the future) GraphQL

Bluesky

Experimental procedure <« — — — — — — — = = = = = = — — — — -
l |
i S I
. ngmt)c/veltght clean Run Engine (bluesky) ——— “Documents” - ;;‘“:2:".;23.:;‘::@.':2::22
architecture 1 ‘[\ /
* Python3 based Documents
b Python abstractions Serialization Access saved data
Event mOdeI for data of hardware (ophyd) (suitcase) (databroker/intake)
A
* Ecosystem of A B l SciPy/PyDats
complementary modules e Sruciures
Y ersistent storage
- a. (Ordinary files on disk, Y
* Proven at NSLS ” Control layer T 9- EPICS) a Database, and/or the Clou;]\ Interactive
d lysi
 Adopted by several other 7 T
faC|||t|es v - , Large detectors jupyter e - -?‘i
Hardware - »~ write directly to storage —
« Our prototypes were (e.0. motors, detectors) g cam
leading to a similar —
architecture

* Part adoption
: diamond

Focus on protocols

e Devices support certain "verbs"
* read(), trigger(), set()...

* User writes a plan that uses building blocks to send messages to
Bluesky

* move(my_device, 1)
* Bluesky interprets the messages and calls the right verbs on Devices
e Data is emitted as Events, which contain data or references to data

diamond

Ophyd-async

PandA is single Device which can be
used in many ways
* Ophyd doesn't separate interface and
logic
* Biginheritance hierarchy
Common logic in flyscans
* Ophyd does this via multiple inheritance
* Lack of composition impairs readability

Async functions improve legibility
* Ophyd uses threads and callbacks

Writing ophyd-async in collaboration
with NSLS-II to solve

PandADevice

| SEQ1]

PCAP !

‘T‘r‘iwer&blepa\nolﬁi

------ | o]

KickoPRQO ~ _

=

comp[e.‘te.o ~u

Pl
|I>e,vice, -

i
&

kickoffQ) 7
CDMFIQI.&'O

SequencerPand 4 —I

4

A\

co mmonﬂpunc()

async def runQ):

owait aﬁyncin.?m'thﬁr(.
Qmput(mn‘tnr, 1),
caputipy,),

)

await capu't(.mc:'tor, 3)

10

diamond

Specific strategies

* Push synchronization down to the hardware wherever possible

e Co-ordinate systemsin the motor controller
e Position compare and time-based triggering in the PandA
* Machine events into PandA

* Will cover the specifics in the requested format

diamond

Synchronization descriptions

%
-)

* Bring all signals to PandA

* Manufacture trigger
signals

* Fan out to detectors and
internally captured
signals

* Bluesky changes internal
wiring of PandA based on
saved configs

* PandA now has MRF EVR
support

Moctor
Controller

Motor

12

diamond

Trajectory control

* EPICS Trajectory control for Delta
Tau Turbo/Power PMAC

* Points can be appended while the
scan is in progress

e Co-ordinate systems implemented
on the controller as kinematics

* Bluesky interfaces to co-ordinate
system motor

* Post processing to calculate co-
ordinate system positions from
captured raw motor positions

e

/home/gnx91527/work/epics/pmac/data/pmacTrajectory.edl

—

Wersion Infarmation

Driver Version

Program Version _

A —

Coordinate System Selection
Ccs

-

J] I

O

Trajectory Scan Profile Build

Maximum Number of Points in Scan |[10000
uid Profie_| oreve - [IEEREREN o

Trajectary Scan Append Points

__ ppend Points | Status _ State

Motor Coordinate System Assianments

totor 1

Motar 2

Motar 3

Motar 4

Motor 5

Motor &

Motor 7

Motar &

C5 Mo

(z2ly]
oW
= | =

=z I Z|Z||Z|Z| =
(= = =R R =)
= =2 =2 =2 ==
CoN G N

[y}
Lile|s
z
g

Select Group

5 Assignment

_TestGroup1 Ol

PRMAC Trajectory Scan Axdis Setup |

S —

Trajectory Scan Profile Execution

Execute Profi | sttvs [ENERERERI o-

Executing

Buffer & Address (hew)
Buffer B Address (hex)
Buffer length (points)
FMAL Current Buffer
FMAC Current Index
PMAC Paints Scanned

PMAL Status Reported

FMAC Trajectory Scan Status —

W

EFICS Driver Status
Driver Buffer A Inclei
Driver Buffer B Index
Total Foints In Scan
Trajectory Scan Time ¢a)
Current Sean CF

% Of Gran Complete

Coordiinate System Status

Trajectory Scan Percent Camplete

0 20 40

Abort

Axis A
Axis B
Axis C
Axis U
Axis ¥
Axis W
Axis X
Axis ¥
Axis 2

Mumber of points to buildfappend to scan |1000 _

Use Axis

=
S
Q
=

Pis

= ===z ||| |5 =
o [0 [o|fo oo a|a
(SO (S S S (S (S

=
3
=

=
]
7

Resolution

Offsat

0.001

0.00m

T

13

diamond

Multiple controllers

* Bluesky has the concept of
Flyable devices which support
kickoff and complete verbs

* We intend to model a flyscan as
a single Flyable so pause/resume
can be sequenced correctly

* We will encapsulate the PandA
and PMAC specific logic in
internal classes and call them
from the top level Flyable

o

[PmACTrajLogic (

PmacPandAFlyer

PandA

.kickoff()
.complete()

.seql[]

.collect()
.pause()
.resume()

PandATriggerLogiE]

.pcap
%< 7 pulsel]

PMAC
-esl]
Jcra)

.motor[]

14 diamond

High speed scans

e Stream data to one of:

* GPFS using SWMR
(current)

 Shared memoryon a
single machine
(prototyped)

e Object store (investigating)
e Kafka (investigating)

* Pass references to this
data via Bluesky event
model

Experimental procedure € — — — — — — — — — — — — — — — — —

l

Run Engine (bluesky) =————» “Documents” >

i

Python abstractions
of hardware (ophyd)
r

Set value Read value

v

Control layer (e.g. EPICS)

3

”
L 4

7’
Hardware -
(e.g. motors, detectors)

write directly to storage

Streaming

wsuallzatlon

\ / & processmgfreductlon

Serialization Access saved data
(suitcase) (databroker/intake)

Persistent storage /

(Ordinary files on disk, \ |
a Database, and/or the Cloud) Interactive
,.r data analysis
s L ;-_.. !
Large detectors Jﬁpyter B v .-":

15

cam

diamond

Other issues

* When to record encoder position -> PandA averages over a gate
e Latency time -> Detector reports deadtime

* Measurement group -> Model them as a single custom Flyer

* Decoupling channels -> Use subscriptions for slow data

* Add timeout to motion -> Plan to pause and resume

* Add early timeout -> Monitor for stall and end early

diamond

Conclusion

* D-Il facility upgrade gives software architecture upgrade opportunity
e Data writing to be more diverse

* PandA developments on different hardware platforms

e CS agnostic Device Server to aid collaboration

* Bluesky/Ophyd to run all scanning

* Pushing down to hardware wherever possible

* Thanks for listening

diamond

	Slide 1: DLS approach to continuous scans
	Slide 2: Contents
	Slide 3: D-II facility upgrade
	Slide 4: Data writing
	Slide 5: What is PandABox?
	Slide 6: PandA Developments
	Slide 7: FastCS: CS Agnostic Device Server
	Slide 8: Bluesky
	Slide 9: Focus on protocols
	Slide 10: Ophyd-async
	Slide 11: Specific strategies
	Slide 12: Synchronization descriptions
	Slide 13: Trajectory control
	Slide 14: Multiple controllers
	Slide 15: High speed scans
	Slide 16: Other issues
	Slide 17: Conclusion

