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D-11 facility upgrade

e 18-month dark period
e Starting end of 2027
* Opportunity to upgrade software architecture

* New beamlines will use new architecture from start

* Existing beamline will gradually be updated to new architecture
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Data writing

* Tension between final format and in-flight format

* Users want data gridded 2, 3
* Live analysis wants a stack of data /dev/shn/<series>/<frane>

 HDF5 VDS is not performant for snake scan

* Instead write to "fast cache” ¥ BB
* Shared memory for local analysis
* Kafka for event-based detectors -
* Object store for multiple readers/writers )
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What is PandABox?
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* Position and Acquisition box

* FPGA with rewirable, configurable processing blocks like pulse
generator, position compare, position capture

* CPU with TCP server for control system integration and web
server for easy setup

* Currently collaboration between DLS, SOLEIL, MAX-IV
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PandA Developments

 PandABrick
* PandA and PowerBrick
* |n one box
 Still 2 systems
* Prototype delivered

 PandASwitch

* PandA firmware
* Running on White Rabbit Switch V4
* Prototype in 2024 (hopefully)

* PandABox Ultra?
* Driven by SOLEIL and LEAPS
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FastCs:

CS Agnostic Device

Server

from typing import Union

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root():
return {"Hello":

@app.get("/items/{item_id}")
int,
item_id,

def read_item(item_id:
return {"item_id":

EPICS
(pythonSoftIOC)

L
@

dataclass
class TempHandler:
cmd: str
async def put(self, controller, value):

(5rt\PhCRL
(Coniq‘)

"World"}

q: Union[str,

await controller.conn.send_command(
f{self.cmd}={value}\r\n")

class TempController(Controller):
start = AttrRW(Int(), handler=TempHandler("S"))
end = AttrRW(Int(), handler=TempHandler("E"))
current = AttrR(Float(prec=3), handler=TempHandler("T"))
enabled = AttrRW(Bool("Off", "On"), handler=TempHandler("N"))

None] = None):

'q": q}

Python framework for making control system devices, fast

EPICS plugin makes pythonSoftlOC + screens + ophyd interface

| — T~ — — — =

_____

Similarin concept to FastAPI, remove boilerplate, support type hints

Plugins for EPICS, Tango and (maybe in the future) GraphQL



Bluesky

Experimental procedure <« — — — — — — — = = = = = = — — — — -
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* Part adoption
: diamond



Focus on protocols

e Devices support certain "verbs"
* read(), trigger(), set()...

* User writes a plan that uses building blocks to send messages to
Bluesky

* move(my_device, 1)
* Bluesky interprets the messages and calls the right verbs on Devices
e Data is emitted as Events, which contain data or references to data
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Ophyd-async

PandA is single Device which can be
used in many ways
* Ophyd doesn't separate interface and
logic
* Biginheritance hierarchy
Common logic in flyscans
* Ophyd does this via multiple inheritance
* Lack of composition impairs readability

Async functions improve legibility
* Ophyd uses threads and callbacks

Writing ophyd-async in collaboration
with NSLS-II to solve
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Specific strategies

* Push synchronization down to the hardware wherever possible

e Co-ordinate systemsin the motor controller
e Position compare and time-based triggering in the PandA
* Machine events into PandA

* Will cover the specifics in the requested format
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Synchronization descriptions

%
- )

* Bring all signals to PandA

* Manufacture trigger
signals

* Fan out to detectors and
internally captured
signals

* Bluesky changes internal
wiring of PandA based on
saved configs

* PandA now has MRF EVR
support

Moctor
Controller

Motor
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Trajectory control

* EPICS Trajectory control for Delta
Tau Turbo/Power PMAC

* Points can be appended while the
scan is in progress

e Co-ordinate systems implemented
on the controller as kinematics

* Bluesky interfaces to co-ordinate
system motor

* Post processing to calculate co-
ordinate system positions from
captured raw motor positions

e
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Multiple controllers

* Bluesky has the concept of
Flyable devices which support
kickoff and complete verbs

* We intend to model a flyscan as
a single Flyable so pause/resume
can be sequenced correctly

* We will encapsulate the PandA
and PMAC specific logic in
internal classes and call them
from the top level Flyable

o
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High speed scans

e Stream data to one of:

* GPFS using SWMR
(current)

 Shared memoryon a
single machine
(prototyped)

e Object store (investigating)
e Kafka (investigating)

* Pass references to this
data via Bluesky event
model
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Other issues

* When to record encoder position -> PandA averages over a gate
e Latency time -> Detector reports deadtime

* Measurement group -> Model them as a single custom Flyer

* Decoupling channels -> Use subscriptions for slow data

* Add timeout to motion -> Plan to pause and resume

* Add early timeout -> Monitor for stall and end early
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Conclusion

* D-Il facility upgrade gives software architecture upgrade opportunity
e Data writing to be more diverse

* PandA developments on different hardware platforms

e CS agnostic Device Server to aid collaboration

* Bluesky/Ophyd to run all scanning

* Pushing down to hardware wherever possible

* Thanks for listening
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